Results of the

NamibRand Nature Reserve

and Pro-Namib Conservancy

Annual Game Count

28 May 2017

Report compiled by:

Editorial input:

Marika Van Brocklin - Student (University of Nebraska)
Kayla Gadeken - Student (University of Nebraska)
Murray Tindall - Control Warden

Nils Odendaal - Chief Executive Officer
Lee Tindall - Environment \& Research Warden

Contents

1. Introduction 3
2. Summary 4
Objective 1: Population and biomass estimates: 4
Population estimates: 4
Biomass estimates 4
Objective 2: Wildlife distribution and density 5
Objective 3: Population change 5
3. Count Methodology 6
Road strip count 6
Game distribution maps 8
4. Objectives and results of the May 2017 count: 9
Objective 1: Population and biomass estimates 9
Population estimates: 9
Biomass estimates 10
Objective 2: Wildlife density and distribution 12
Objective 3: Population change. 19
5. Discussion and conclusions 22
6. Acknowledgments 25
7. Appendix 26

1. Introduction

This report provides summarized results and analysis of the annual game count held on the NamibRand Nature Reserve and the Pro-Namib Conservancy on the 28th of May 2017. This is the 13th consecutive year that the count was held since its inception in 2005.

A game count briefing was held at the NamibRand Nature Reserve AGM on the day preceding the count where Control Warden Murray Tindall highlighted the objectives of the count and outlined the methodology and rules for the teams who would conduct the count. This helps to ensure consistency over consecutive years and allows a more accurate comparison from year to year.

Previous years data has been entered into a purpose designed database which generates the estimates used in this report in terms of total population, density and biomass. A few minor adjustments have been made to the database in order to improve its accuracy and this has slightly altered the figures for previous years as well as this years' count.

Surprisingly, even though this is the fifth year of drought the population estimates, as well as the overall density, showed marked increases this year. Individual populations of the two major grazers in this ecosystem, oryx and springbok, showed increases of 60% and 10% respectively. Overall, there was a significant increase in the majority of the different species populations this year (43% increase). However, the population of Ruppel's Korhaan was the only population that showed a decrease (36\%).

The distribution of animals across the reserve showed a slight trend of migration towards the northern parts of the NamibRand Nature Reserve. The majority of animals were concentrated near the north of the reserve, in plains/grassland areas (Zones 2, 3 and 4). The highest estimated populations of animals were seen in Zones 2 and 3.

It is worth reiterating that this census method is best suited to large plains game such as oryx, springbok and Burchell's zebra and is less suited to smaller species such as steenbok, or species with different habitat requirements such as kudu or mountain zebra. In addition, the estimates provided are intended to give an indication of population numbers and enable a comparison from year to year and may not be an entirely accurate reflection of the actual number of animals on the Reserve.

2. Summary

Data collected in the May 2017 game count was entered into our database and analyzed. The results are shown below bearing our three core objectives in mind:

Objective 1: Population and biomass estimates:

Population estimates:
Table 1. Total number of game seen and the estimated numbers for May 2017.

Total estimated numbers of game (Zone 1-10; May 2017)		
Species	No. Counted	Estimate 2017
Gemsbok	2,847	10,625
Springbok	651	3,243
Kudu	1	4
Steenbok	0	0
Ostrich	76	226
Ludwigs Bustard	29	222
Ruppel's Korhaan	22	234
B. Zebra	347	717
Hartebeest	62	174
Total	$\mathbf{4 , 0 3 5}$	$\mathbf{1 5 , 4 4 5}$
Giraffe*	9	9

*Total numbers known

Biomass estimates

Table 2. Wildlife biomass estimates for May 2017.

Total wildlife numbers and wildlife biomass on NamibRand for May 2017 (Zone 1-10) ; 224,209 ha)

Species	Mean mass $\mathbf{(k g)}$	Estimated wildlife numbers from May 2017 game count	Species biomass (kg)	Biomass per ha (kg)
Gemsbok	220	10,625	$2,337,500$	12.52
Springbok	38	3,243	123,234	0.66
Kudu	180	4	720	0.00
Steenbok	11	0	0	0.00
Ostrich	68	226	15,368	0.08
B. Zebra	300	717	215,100	1.15
Hartebeest	130	174	22,620	0.12
Total	$\mathbf{9 4 7}$	$\mathbf{1 4 , 9 8 9}$	$\mathbf{1 4 , 1 9 4 , 5 8 3}$	$\mathbf{7 6 . 0 0}$

Table 3. Total number of animals counted per 100 km in each route and the respective density percentage per zone.

Total no. of animals counted per 100km per route			
Route	Route Length (km)	No. of animals counted/100km	\% of total animals counted per 100km
$\mathbf{1}$	52	293	3%
$\mathbf{2}$	49	1,775	21%
$\mathbf{3}$	54	979	11%
$\mathbf{4}$	47	1,589	19%
$\mathbf{5}$	72	780	9%
$\mathbf{6}$	36	1,597	19%
$\mathbf{7}$	55	427	5%
$\mathbf{8}$	54	771	9%
$\mathbf{9}$	60	277	3%
$\mathbf{1 0}$	52	91	1%
Total	$\mathbf{5 3 1}$	$\mathbf{8 , 5 7 9}$	

Objective 3: Population change

Table 4. The overall population estimate has increased by 43% and the number of animals counted per 100 km per route has increased by 38.42%.

Total estimated numbers of game (Zone 1-10; May 2016-May 2017)					
Species	May-16		May-17		
	No. Counted	Total Estimated Number	No. Counted	Total Estimated Number	Percentage Change
Gemsbok	1,778	6,650	2,847	10,625	60%
Springbok	690	2,944	651	3,243	10%
Kudu	0	0	1	4	100%
Steenbok	0	0	0	0	0%
Ostrich	55	144	76	226	57%
Ludwigs Bustard	11	92	29	222	141%
Ruppel's Korhaan	29	363	22	234	-36%
B. Zebra	280	440	347	717	63%
Hartebeest	72	149	62	174	17%
Total	2,915	$\mathbf{1 0 , 7 8 2}$	$\mathbf{4 , 0 3 5}$	$\mathbf{1 5 , 4 4 5}$	$\mathbf{4 3 \%}$
Giraffe*	9	9	9	9	0%

*Total (estimate) numbers known

3. Count Methodology

The primary objectives of the game count are to determine the density and distribution of game and to estimate the total number of game in a given, or total, area. For this reason, the survey methodology used is a combination of the road strip census and game distribution map techniques. In layman's terms, these can be explained as follows:

Road strip count

This is one of the most effective methods to use when counting in a relatively open and homogenous landscape. For the purposes of the count, the total area is divided into game count zones, each with its own standardized route, as shown in Figure 1 on the next page. The game count zones were, as far as possible, deliberately predetermined into homogenous habitats because the visibility of animals differs in each habitat. Each route forms a strip transect through its zone within which the animals are counted. A transect width of 1 km is used (500 m on either side of the road). During the count, all animals on either side of the road are recorded, and the distances (at right angles to the vehicle and road) from the road to the animal or group of animals is recorded. These distance records are important, as they shape the effective strip width (ESW) values, which are automatically adjusted each year when data is entered into the database.
The length of the transect (distance traveled) and its relation to the area represented in the zone is used to calculate the area correction factors for each zone, i.e. area represented/route length $=$ area correction factor. The respective effective strip width (ESW) values and transect width then determines the relevant species correction factors, i.e. transect width (1000m) divided by (ESW x 2) = species correction factor. The area correction factors and species correction factors, adjusted by the relevant effective strip widths, i.e. how far each species is readily seen, is then used to calculate the population estimates. So basically, the area correction factor multiplies the number seen up based on the percentage of the area sampled and assumes all animals within 500 m of the transect line are detected. The species correction factor then adjusts this estimate based on the detection curve (ESW) for the species. The correction factors and route distances as used in the 2015 game count methodology, along with the area represented per zone can be seen in table 5 below.

Table 5. Total count areas per zone (ha), route distances, area correction factors, effective strip widths and species correction factors for each species within each zone for 2017.

Count areas, area correction factors, effective strip widths and species correction factors										
Route No.	Total area perzone (ha)	Area represented per route	Route distance (km)	Area correction factor	Species	Effective strip width (m)	Species correction factor	Species	Effective strip width (m) routes 1-10	5pecies correction factor (m) routes 1 - 10
1	18072	12513	52	2,41	Gemsbok	392	1,28	Ostrich	667	0,75
					Springbok	328	1,52	Kudu	417	1,20
2	18310	13779	52	2,65	Gemsbok	310	1,61	Steenbok	51	9,80
					Springbok	226	2,21	Ruppells korhaan	141	3,55
3	27039	26424	58	4,56	Gemsbok	463	1,08	Ludwigs bustard	208	2,40
					Springbok	193	2,59			
4	21038	20996	47	4,47	Gemsbok	622	0,80			
					Springbok	479	1,04			
5	18038	17491	72	2,43	Gemsbok	540	0,93			
					Springbok	325	1,54			
6	19352	11589	34	3,41	Gemsbok	541	0,92			
					Springbok	346	1,45			
7	28343	18833	55	3,42	Gemsbok	509	0,98			
					Springbok	263	1,90			
8	22452	19291	52	3,71	Gemsbok	607	0,82			
					Springbok	419	1,19			
9	21710	21125	50	4,23	Gemsbok	400	1,25			
					Springbok	436	1,15			
10	29855	24721	59	4,20	Gemsbok	324	1,54			
					Springbok\|	501	1,00			
Total	224209	186762	531							

Figure 1. The game count area shows the ten zones used in May 2017 for the NamibRand Nature Reserve (1-8, 10) and the Pro-Namib Conservancy (9).

Game distribution maps

In order to determine and show the distribution and density of game in the various zones of the count area, monad grids are used to map the locality of the animals counted. Each route is supplied with a map containing the monad, with reference numbers, of the zone in which that route is set as seen in the image below.

During the count the monad grid number in which animal counted is seen, is recorded. This grid number is then used to map the distribution of each recorded animal.

Figure 2. Monad maps.

4. Objectives and results of the May 2017 count:

Objective 1: Population and biomass estimates

Population estimates:

The population estimates for individual species in the total count area are derived from the actual number of animals seen during the count and the relevant species and area correction factors that are applied to that number. The actual numbers seen is multiplied by the relevant area and species correction factors to get the population estimates.

S: Actual number of animals seen*
A: Area correction factor

Formula for calculating population estimates* $(\mathrm{S} \times \mathrm{A}) \times \mathrm{B}=\mathrm{P}$

B: Species correction factor
*Known numbers
Note that where total numbers of species with small populations are known (e.g. for recently introduced species such as red hartebeest, Burchell's zebra and giraffe), these known totals are used for the final population estimates in reference to the above calculated estimates.

The total estimates per species per zone were then combined for all zones in order to determine the total population estimate for each plains game species in the count area (see Table 1 below).

Table 1. Total number of game seen and the estimated numbers for May 2017.

Total estimated numbers of game (Zone 1-10; May 2017)		
Species	No. Counted	Estimate 2017
Gemsbok	2,847	10,625
Springbok	651	3,243
Kudu	1	4
Steenbok	0	0
Ostrich	0	226
Ludwigs Bustard	76	222
Ruppel's Korhaan	29	234
B. Zebra	22	717
Hartebeest	347	174
Total	62	$\mathbf{1 5 , 4 4 5}$
Giraffe*	$\mathbf{4 , 0 3 5}$	9
*Toln	9	9

*Total numbers known

Population estimates are multiplied by the mean weight of the species and divided by the total count area (ha) to get the estimated biomass per species.

E: Estimated wildlife numbers
M: Mean mass per species
H: Total no. of hectares

Formula for calculating biomass estimates
$($ ExM) $\div H=B$

B: Biomass estimate

Biomass estimates are important in terms of managing habitat conditions and inter-specific competition. Note that agricultural Livestock Units (LSU) are not used for determining the biomass of wildlife species, due to differences between domestic and wild animals. These two species are different in aspects such as grazing/browsing patterns and agricultural stocking. LSU are also in a fenced systems opposed to the open, unfenced system within the Reserve.

Tables 6.1, 6.2 and 6.3 below show the biomass estimates for this year, and the biomass estimates for previous years compared to this year.

Table 6.1 Wildlife biomass estimates for May 2017.

Total wildlife numbers and wildlife biomass on NamibRand for May 2017 (Zone 1-10; 224,209 ha)				
Species	Mean mass (kg)	Cstimated wildlife numbers from May 2017 game count	Species biomass (kg)	Biomass per ha (kg)
Gemsbok	220	10,625	$2,337,500$	12.52
Springbok	38	3,243	123,234	0.66
Kudu	180	4	720	0.00
Steenbok	11	0	0	0.00
Ostrich	68	226	15,368	0.08
B. Zebra	300	717	215,100	1.15
Hartebeest	130	174	22,620	0.12
Total	$\mathbf{9 4 7}$	$\mathbf{1 4 , 9 8 9}$	$\mathbf{1 4 , 1 9 4 , 5 8 3}$	$\mathbf{7 6 . 0 0}$

The chart in figure 3 below shows the biomass composition of the different species across the total count area for the year 2017.

Biomass composition 2017

Figure 3. Biomass composition 2017.

Table 6.2 Wildlife biomass (2017) percentage change compared to the count of May 2016.

Wildlife biomass on NamibRand for May 2016 and May 2017 (Zone 1-10; 224,209 ha)								
Wildife Species	Mean Mass (kg)	May-16			May-17			Biomass Percentage Change
		Estimated Wildlife Numbers From May 2016 Game Count	Species Biomass (kg)	Biomass per ha (kg) Total	Estimated Wildlife Numbers From May 2017 Game Count	Species Biomass (kg)	Biomass per ha (kg)	
							Total	
Gemsbok	220	6,650	1,463,000	7.83	10,625.00	2,337,500	12.52	59.90\%
Springbok	38	2,944	111,872	0.60	3,243.00	123,234	0.66	10.00\%
Kudu	18	0	0	0.00	4.00	0.00	0.00	100.00\%
Steenbok	11	0	0	0.00	0.00	0.00	0.00	0.00\%
Ostrich	68	144	9,792	0.05	226.00	15,368	0.08	60.00\%
B. Zebra	300	440	132,000	0.71	717.00	215,100	1.15	61.97\%
Red Hartebeest	130	149	19,370	0.10	174.00	22,620	0.12	20.00\%
Total		10,327	1,736,034	9.30	14,989	14,194,583	76.00	7.17\%

Table 6.3 Wildlife biomass estimates from 2015-2017.

Total wildlife biomass estimates (kg/ha) on NamibRand (May 2015 to May 2017)					
Wildlife Species	May-15	May-16	\% Change from May-15	May-17	\% Change from May-16
Gemsbok	8.77	7.83	-10.72%	12.52	59.90%
Springbok	0.70	0.60	-14.29%	0.66	10.00%
Kudu	0.01	0.00	-100.00%	0.00	0.00%
Steenbok	0.00	0.00	0.00%	0.00	0.00%
Ostrich	0.08	0.05	-37.50%	0.08	60.00%
B. Zebra	0.59	0.71	20.34%	1.15	61.97%
Red Hartebeest	0.15	0.10	-33.33%	0.12	20.00%
Total	$\mathbf{1 0 . 3 0}$	$\mathbf{9 . 3 0}$	$\mathbf{- 9 . 7 1 \%}$	$\mathbf{1 4 . 5 3}$	$\mathbf{5 6 . 2 4 \%}$

Objective 2: Wildlife density and distribution

To calculate the population density, the actual number of animals per species counted in each zone is divided by the respective route length and then multiplied by 100 to get the total number of animals seen per 100 km .

S: Actual number of animals seen
R: Length of route
K: Wildlife density - i.e. Animals seen per 100km driven

> Formula for calculating wildlife density $$
(S \div R) \times 100=K
$$

For the purposes of this report, wildlife distribution is based on the amount of animals seen in each monad.
During the game count, each sighting is marked to the corresponding monad the animal(s) was seen in. This data is then used to map the distribution of the animals (i.e. where animals were seen).

Please note that for the total wildlife distribution, all game species counted were used in the (mapping) calculation. The total wildlife (species) distribution and density are shown in the maps below. These densities were calculated using the formula prescribed above.
Note that the data is indicated on a gradient from light (low values) to dark (high values).

Figure 4.1 Total wildlife density

Figure 4.2 Total wildlife distribution

Figure 4.3 Density of gemsbok

Figure 4.5 Density of springbok

Figure 4.4 Distribution of gemsbok

Figure 4.6 Distribution of springbok

Figure 4.7 Density of B. zebra

Figure 4.9 Density of ostrich

Figure 4.8 Distribution of B. Zebra

Figure 4.10 Distribution of ostrich

The population densities and actual number seen for individual species per zone are shown in tables 7.1-7.7 below.

Table 7.1

Gemsbok			
Route	Route length	Actual number seen	Density
1	52	122	234.62
2	49	512	1,044.90
3	54	499	924.07
4	47	535	1,138.30
5	72	377	523.61
6	36	378	1,050.00
7	55	146	265.45
8	54	252	466.67
9	60	45	75.00
10	52	26	50.00
		2,892	5,772.62

Table 7.3

Ostrich Route			
Route length	Actual number seen	Density	
1	52		0
2	49	0.00	
3	54	0.00	
4	47	12	22.22
5	72	9	19.15
6	36	0	0.00
7	55	24	66.67
8	54	4	7.27
9	60	0	0.00
10	52	9	15.00

Table 7.5

Red Hartebeest			
Route	Route length	Actual number seen	Density
1	52	0	0.00
2	49	61	124.49
3	54	0	0.00
4	47	0	0.00
5	72	1	1.39
6	36	0	0.00
7	55	0	0.00
8	54	0	0.00
9	60	0	0.00
10	52	0	0.00
		$\mathbf{6 2}$	$\mathbf{1 2 5 . 8 8}$

Table 7.2

Springbok			
Route	Route length	Actual number seen	Density
1	52	28	53.85
2	49	32	65.31
3	54	18	33.33
4	47	203	431.91
5	72	49	68.06
6	36	138	383.33
7	55	72	130.91
8	54	109	201.85
9	60	82	136.67
10	52	2	3.85

Table 7.4

Burchell's Zebra			
Route	Route length	Actual number seen	Density
1	52	0	0.00
2	49	261	532.65
3	54	0	0.00
4	47	0	0.00
5	72	13	18.06
6	36	18	50.00
7	55	12	21.82
8	54	43	79.63
9	60	0	0.00
10	52	0	0.00
		347	702.16

Table 7.6

Ruppel's Korhaan			
Route	Route length	Actual number seen	Density
1	52	0	0.00
2	49	9	18.37
3	54	0	0.00
4	47	0	0.00
5	72	2	2.78
6	36	9	25.00
7	55	2	3.64
8	54	0	0.00
9	60	0	0.00
10	52	0	0.00
		$\mathbf{2 2}$	$\mathbf{4 9 . 7 8}$

Table 7.7

Ludwig's Bustard							
Route	Route length	Actual number seen	Density				
1	52	2	3.85				
2	49	4	8.16				
3	54	0	0.00				
4	47	0	0.00				
5	72	3	4.17				
6	36	7	19.44				
7	55	1	1.82				
8	54	12	22.22				
9	60	0	0.00				
10	52	0	0.00				
						$\mathbf{2 9}$	$\mathbf{5 9 . 6 6}$

The total wildlife density for all game species (including Ludwig's Bustard and Ruppel's Korhaan) combined in each count zone for May 2017 is shown in Table 8 below, and the percentage distribution in each zone is shown in Figure 5 that follows.

Table 8. Total number of animals counted per 100km for each route in 2017.

Total no. of animals counted per 100km per route			
Route	Route Length (km)	No. of animals counted/100km	\% of total animals counted per 100km
$\mathbf{1}$	52	293	3%
$\mathbf{2}$	49	1,775	21%
$\mathbf{3}$	54	979	11%
$\mathbf{4}$	47	7,589	19%
$\mathbf{5}$	72	780	9%
$\mathbf{6}$	36	1,597	19%
$\mathbf{7}$	55	427	5%
$\mathbf{8}$	54	771	9%
$\mathbf{9}$	60	277	3%
$\mathbf{1 0}$	52	91	1%
Total	$\mathbf{5 3 1}$	$\mathbf{8 , 5 7 9}$	

Percentage of total animals counted per 100km in each route

Figure 5. Population density percentages throughout the count area.

The total wildlife density for all species (including Ludwig's Bustard and Ruppel’s Korhaan) combined per count zone in May 2017, compared to May 2016 and May 2015, is shown in Table 9 below.

Table 9. Total number of animals counted per 100km for each route in 2017 compared to 2015 and 2016.

Total no. of animals counted per 100km per route (May 2015-May 2017)				
Route	May-15	May-16	May-17	\% Change (May-16 to 17)
1	155	154	293	90%
2	817	261	1,775	580%
3	579	383	979	156%
4	1,182	721	1,589	120%
5	814	612	780	27%
6	901	639	1,597	150%
7	731	785	427	-46%
8	563	380	771	103%
9	76	1,050	277	-74%
10	171	25	91	264%
Total	5,989	5,010	$\mathbf{8 , 5 7 9}$	$\mathbf{7 1 \%}$

Total wildlife population density for 2015-2017

Figure 6. Total wildlife density change from 2015-2017.

Objective 3: Population change

The total estimated numbers of game for the May 2017 count is compared to those from previous years to illustrate the population change, and are shown in Tables 10 and 11 below. The overall population estimate has increased by 43% and the number of animals counted per 100 km per route has increased by 38.42%.

Table 10. Population estimates for 2017 compared to 2016.

Total estimated numbers of game (Zone 1-10; May 2016-May 2017)					
Species	May-16		May-17		Percentage Change
	No. Counted	Total Estimated Number	No. Counted	Total Estimated Number	
Gemsbok	1,778	6,650	2,847	10,625	60\%
Springbok	690	2,944	651	3,243	10\%
Kudu	0	0	1	4	100\%
Steenbok	0	0	0	0	0\%
Ostrich	55	144	76	226	57\%
Ludwigs Bustard	11	92	29	222	141\%
Ruppel's Korhaan	29	363	22	234	-36\%
B. Zebra	280	440	347	717	63\%
Hartebeest	72	149	62	174	17\%
Total	2,915	10,782	4,035	15,445	43\%
Giraffe*	9	9	9	9	0\%

*Total (estimate) numbers known
The long term total population estimates are presented in the table below.
Table 11. Population estimates for years 2006-2017.
Total estimated numbers of game (Jun 2006 - May 2017)

Total estimated numbers of game (Jun 2006 - May 2017)												
Species	Jun-06	Jun-07	Jun-08	$\begin{gathered} \text { Jun-09 } \\ (1-9) \end{gathered}$	$\begin{gathered} \text { Jun-10 } \\ (1-9) \end{gathered}$	$\begin{gathered} \text { Jun-11 } \\ (1-9) \end{gathered}$	$\begin{gathered} \text { Jun-12 } \\ (1-10) \end{gathered}$	$\begin{gathered} \text { Jun-13 } \\ (1-10) \end{gathered}$	May-14 $(1-10)$	May-15 $(1-10)$	$\begin{gathered} \hline \text { May- } \\ 16 \\ (1-10) \end{gathered}$	$\begin{gathered} \text { May-17 } \\ (1-10) \end{gathered}$
Gemsbok	1,447	3,571	2,938	5,069	3,972	6,696	7,493	8,112	9,087	7,447	6,650	10,625
Springbok	17,900	7,704	11,705	11,938	7,359	9,968	6,225	5,828	3,024	3,420	2,944	3,243
Kudu	583	151	23	31	10	15	16	5	0	7	0	4
Steenbok	44	123	151	40	0	0	0	0	0	0	0	0
Ostrich	213	550	312	733	448	365	748	183	220	218	145	226
Ludwigs Bustard	0	286	45	53	693	286	285	381	247	119	92	222
Ruppel's Korhaan	0	127	0	224	210	335	468	388	229	145	362	234
B. zebra*	439	677	668	318	350	370	470	320	352	370	440	717
Hartebeest*	70	80	80	80	110	125	177	204	197	220	149	174
Giraffe*	0	0	0	4	8	6	6	6	7	7	9	9
Total	20,696	13,269	15,922	18,490	13,160	18,166	15,888	15,427	13,363	11,953	10,789	15,445
Blesbok*	15	20	20	23	19	18	7	3	0	0	0	0
\% change	58\%	-35\%	19\%	16\%	-28\%	38\%	-12\%	-2\%	-13\%	-10\%	-9\%	43\%

*Total numbers known

The graphs in figure 7.1-7.4 below, show the total long term individual estimate changes for the four most common species. Please note that the figures of these graphs are taken from the respective species estimates from the maximum number of routes counted in each year.

Figure 7.1
Gemsbok population change 2007-2017

Figure 7.2
Springbok population change 2007-2017

Figure 7.3
Burchell's zebra population change 2007 2017

Figure 7.4
Red hartebeest population change 2007-2017

The graph in Figure 8 below shows long term total population estimate change compared to the average annual rainfall received for the same period. Please note that as with the previous graphs, the figure for this graph was taken from the total population estimates and from the maximum number of routes counted in each year.

Figure 8. Total population change 2007 to 2017 compared to average rainfall.

5. Discussion and conclusions

Gemsbok

The results of the 2017 gemsbok population estimate shows an increase of 59.77% (10,625 gemsbok) from last year's estimate (6,650 gemsbok). This is the first increase in gemsbok estimate numbers since 2014. While this is a significant increase in the population, it should be noted that there was an increase in rainfall in the central zones, thus causing an immigration of herds.

The highest density of gemsbok was recorded in Zone 4, which had a total of 1,138 gemsbok per 100 km . This is consistent with the previous two years indicating a preference for the habitat found in this zone. The second highest density of gemsbok was in Zone 6 (1,050 gemsbok per 100 km). The higher densities of gemsbok in Zones 4 and 6 represents a southerly shift which is also seen in the previous year's data. In 2016, the highest densities were recorded in Zone 4 and Zone 7. The lowest density recorded in the 2017 population estimate was 50 gemsbok per 100 km , which was recorded in Zone 10. The second lowest density was recorded in Zone 9, 75 gemsbok per 100 km .

Overall, the population appears to be shifting slightly towards the central and southern parts of the reserve. These results follow trends in previous year's data, which indicates a shift from the northern part of the reserve, to the central and southern parts.

Springbok

The estimated number of springbok for this year is 3,243 , which is an increase of 10.16% from last year's estimate of 2,944 . Although the estimated number of springbok is higher, the actual number of springbok seen has decreased from 690 in 2016 to 651 in 2017. This is a 6% decrease in springbok sightings.

The springbok were predominantly concentrated in Zones 4, 6 and 7. Of the estimated 3,243 springbok, there were 2,858 springbok or 63% of the total population in these zones. No springbok were accounted for in Zone 9 and only 8 springbok were estimated for Zone 10 . The other zones showed an average estimated population of 150 springbok.

Kudu

Only one kudu was counted in this year's game count and an estimated population for the reserve is 4 . This estimated population does not give a true reflection of the kudu population, as sightings and camera trap images throughout the year suggest that there is a healthy population of kudu on the reserve. There was no kudu recorded during last year's game count and only two were recorded in 2015's game count. The game count method for this species is the most likely explanation for the fact that very few have been seen in the past three years.

Steenbok

For the fourth year in a row, no steenbok have been seen during the game count. As the case with the kudus, the census method is not well suited for steenbok. Although no steenbok have been recorded, this is not a true reflection of the population on the reserve.

Ostrich

This year's ostrich population estimate is 226 . This is an 56.9% increase from last year's population estimate of 145. The majority of the sightings were in Zone 6 (24 ostrich) and Zone 10 (27 ostrich), whereas no ostrich were recorded for Zones $1,2,8$ and 5 . This is the first increase in the population in more than five years.

Ludwig's Bustard

The estimated number of Ludwig's Bustard increased from 92 in 2016 to 222 in 2017, a 141\% increase. This indicates a huge increase in the population size, something that has been seen throughout previous years. There are vast fluctuations in the Ludwig's Bustard estimated population size from year to year, and there are no trends to suggest a steady increase or decrease in the population.

Ruppel's Korhaan

The estimated number of Ruppel’s Korhaan decreased from 362 in 2016 to 234 in 2017, a 35\% decrease. This decrease is most certainly attributable to the drought across the reserve. Overall, 22 Ruppel's Korhaan were seen this year as opposed to 29 last year.

Burchell's Zebra

This is the second year calculated estimates were used to estimate the total population size for Burchell's zebra, since their range has expanded to cover most zones on the reserve. The Effective Strip Width (ESW) provides a greater visibility of Burchell's zebras and provided estimates that should closely resemble the total count number.

This year, a total of 347 zebra were counted to give a total estimated population of 717 . This is a 107% increase from 2016. As indicated previously the population is widespread throughout the reserve and zebra were only absent, or not counted, in Zones 9, 4, 3, and 1. Zone 2 had the highest density of 533 zebra per 100 km and accounted for more than half of the estimated population.

Burchell's zebra are considered less drought tolerant than gemsbok or springbok, but the population continued to increase. The increase in population is most likely attributable to their range expansion, coupled with the widespread provision of water in the reserve. The threshold has not yet been met for the zebra, but in the future their numbers will reach their threshold of tolerance and begin to decline.

Red Hartebeest

The estimated number of red hartebeest increased from 149 in 2016 to 174 in 2017, a 16.78\% increase. This population estimate however might be a bit low, because they were only seen in two zones. There was 61 hartebeest seen in Zone 2 and only 1 seen in Zone 5.

Giraffe

There were no giraffe sightings during this year's game count. Although there were no sightings there are regular sightings that suggest there are 9 giraffes on the reserve. There are 6 giraffes in the southern parts of the reserve, and 3 found in the northern parts of the reserve. It is unlikely that the population of giraffes will change in the near future, because the cows and bulls were separated during the relocation of a group of 4 to the southern part of the reserve.

Total population change, distribution and densities

The total population estimate increased by 43.24% this year to 15,445 animals. The actual number of animals counted also increased from 2,915 animals in 2016 to 4,035 animals in 2017, an increase of 38.42%. The increase in both the estimated and counted populations of animals is most likely due to the drought across the reserve. The reserve is currently in the longest consecutive period of below average rainfall since the inception of the game count in 2005.

From the data, it is possible to suggest that the estimated and counted populations increased due to the immigration of animals onto the reserve. The movement of animals suggests that the reserve has a more adequate water supply and better resources for the majority of animals, and the animals are most likely coming from a more drought-stricken regions. This increase in the total population size will lead to major increases in
competition for resources in the near future. The areas throughout the reserve will be depleted of its vital resources more quickly than usual due to the huge fluctuation in population size.

The overall density showed a 44.76% increase from the previous year and was consistent with the estimated population increase from previous years. This year, a total density of 760 animals per 100 km was observed compared to 525 in 2016. The overall distribution of animals across the reserve showed a slight trend of migration towards the northern parts of the NamibRand Nature Reserve.

6. Acknowledgments

The NamibRand Nature Reserve would like to thank all of its concessionaires, stakeholders, neighbors and participants for their enthusiastic involvement to make this year's game count another success.

This year's participants were:
Peter Woolfe, Etienne Rossouw, Elton Vries, Jaques Swartbooi, John Bernstein, Dominic
Fitzpatrick, Andrew Shapin, Willem Rooi, Eben Tsaobeb, Fritz Tsaobeb, Aloysis Hanse, Christiane Berker, Alex Boll, K. Garbade, Sakeus, H. Nghuumbwa, Bravo Kasupi, Bernhard, Quintin Hartung, Greg Yries, Manuella Schmid, Thomas Kelin, Kerstin Klein, Willie, Agnes, Elizabeth Johannes, Franziska Keresztesi, Esme, Elia, Nina and Ruben Bonifacious.

7. Appendix

Results per count route per zone

Tables 12.1 to 12.10 list the data collected on each route in May 2017, which were used as a basis for the analysis.

Table 12.1

Route 1						
Species	Total number counted	Density	Estimated population			
Gemsbok	122	235	374			
Springbok	28	54	103			
Kudu	0	0	0			
Steenbok	0	0	0			
Ostrich	0	0	0			
Ludwig's Bustard	2	4	12			
Ruppel's Korhaan	0	0	0			
B. Zebra	0	0	0			
Hartebeest	0	0	0			
Total	$\mathbf{1 5 2}$	$\mathbf{2 9 2}$	$\mathbf{4 8 9}$			
Jackal*	1					
Hartmann's Mountain Zebra*	$\mathbf{1 7}$					

*Not included in count
Table 12.2

Table 12.3

Route 3			
Species	Total number counted	Density	Estimated population
Gemsbok	499	924	6,237
Springbok	18	33	228
Kudu	0	0	0
Steenbok	0	0	0
Ostrich	12	22	44
Ludwig's Bustard	0	0	0
Ruppel's Korhaan	0	0	0
B. Zebra	0	0	0
Hartebeest	0	0	0
Total	529	979	6,509
Jackal*	3		
Bat-eared Fox*	5		
Lappet-Faced Vulture*	16		

${ }^{*}$ Not included in count
Table 12.4

Route 4			
Species	Total number counted	Density	Estimated population
Gemsbok	535	1,138	1,921
Springbok	203	432	947
Kudu	0	0	0
Steenbok	0	0	0
Ostrich	9	19	30
Ludwig's Bustard	0	0	0
Ruppel's Korhaan	0	0	0
B. Zebra	0	0	0
Hartebeest	0	0	0
Total	$\mathbf{7 4 7}$	$\mathbf{1 , 5 8 9}$	$\mathbf{2 , 8 9 8}$
Jackal*	4		
Lappet-Faced	17		

*Not included in count

Table 12.5

Route 5			
Species	Total number counted	Density	Estimated population
Gemsbok	377	524	848
Springbok	49	68	183
Kudu	0	0	0
Steenbok	0	0	0
Ostrich	0	0	0
Ludwig's Bustard	3	4	18
Ruppel's Korhaan	2	3	17
B. Zebra	15	21	15
Hartebeest	1	1	2
Total	$\mathbf{4 4 7}$		$\mathbf{6 2 1}$

Table 12.6

Route 6			
Species	Total number counted	Density	Estimated population
Gemsbok	378	1,050	1,125
Springbok	138	383	642
Kudu	1	3	4
Steenbok	0	0	0
Ostrich	24	67	58
Ludwig's Bustard	7	19	54
Ruppel's Korhaan	9	25	103
B. Zebra	18	50	27
Hartebeest	0	0	
Total	575	1,597	2,013
Jackal*	7		
Lappet-faced Vulture*	8		
White-backed			
Vulture*	5		
Yellow			
Mongoose*	2		
Hartmann's			
Mountain Zebra*	16		

Table 12.7

Route 7			
Species	Total number counted	Density	Estimated population
Gemsbok	146	265	491
Springbok	72	131	469
Kudu	0	0	0
Steenbok	0	0	0
Ostrich	4	7	10
Ludwig's Bustard	1	2	8
Ruppel's Korhaan	2	4	24
B. Zebra	12	22	20
Hartebeest	0	0	0
Total	$\mathbf{2 3 7}$	$\mathbf{4 3 1}$	$\mathbf{1 , 0 2 2}$
Lappet-faced 2			
Vulture*	2		

Table 12.8

Route 8			
Species	Total number counted	Density	Estimated population
Gemsbok	252	467	742
Springbok	109	202	465
Kudu	0	0	0
Steenbok	0	0	0
Ostrich	0	0	0
Ludwig's Bustard	12	22	103
Ruppel's Korhaan	0	0	0
B. Zebra	43	80	63
Hartebeest	0	0	0
Total	416	771	1,373
Southern Pale Chanting Goshawk*	1		
Namaqua Dove*	1		
Jackal*	4		

Table 12.9

Route 9			
Species	Total number counted	Density	Estimated population
Gemsbok	45	75	243
Springbok	0	0	0
Kudu	0	0	0
Steenbok	82	137	405
Ostrich	9	15	29
Ludwig's Bustard	0	0	0
Ruppel's Korhaan	0	0	0
B. Zebra	0	0	0
Hartebeest	0	0	0
Total	$\mathbf{1 3 6}$	$\mathbf{2 2 7}$	$\mathbf{6 7 7}$
Bat-eared Fox*	1		
Lappet-faced Vulture*	1		
*Not included in count			

Table 12.10

Route 10			
Species	Total number counted	Density	Estimated population
Gemsbok	26	50	165
Springbok	2	4	8
Kudu	0	0	0
Steenbok	0	0	0
Ostrich	27	52	83
Ludwig's Bustard	0	0	0
Ruppel's Korhaan	0	0	0
B. Zebra	0	0	0
Hartebeest	0	0	0
Total	$\mathbf{5 5}$	$\mathbf{1 0 6}$	$\mathbf{2 5 6}$
Jackal*	2		
Lappet-faced Vulture*	1		
Not included in count			

Table 12.11

